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Note 

Note on Laplace Transforms of Osculatory and Hyperosculatory 

Interpolation Polynomials 

INTRODUCTION 

The numerical evaluation of F(p), the Laplace transform of f(t), for prescribed 
values ofp > 0, involves the quadrature 

F(p) = Joa @“f(t) dt. (1) 

Whenf(t) is approximable by polynomials, even if the required degree is very high 
in order to obtain F(p) accurately, it is usually most convenient to employ Gauss- 
Laguerre quadrature 

where 9(t) = f(t/p), which is exact when f or+ is a (2~2 - 1)th degree polynomial. 
Tables of tj and Aj , the zeros and Christoffel numbers of the Laguerre polynomials, 
are available in multiple precision up to very high n, the most extensive of which are 
for n = 2(l) 32(4) 68, to 30s [5, pp. 253-2751. 

Now oftenf(t$/p) is not easily calculated and values of bothf(i) andf’(i) happen 
to be known at the integral points i = O(1) a - 1.l For example, some functions 
occur naturally only at integral points, or are available from previously calculated 
tables where the arguments are at equal intervals. Also when f and f’ satisfy fairly 
simple difference equations, it is frequently easier to generatef(i) and f’(i) than to 
calculatef(tj/p). A sufficiently good approximation to F’(p) is often obtainable by 
replacing f(t) in (1) by L,,-,(t), the (2n - 1)th degree osculatory interpolation 
polynomial based upon f(i) and f’(i), i = O(1) n - I, where n is not too large. 
An earlier table which was calculated from the Laplace transforms of only ordinary 
n-point interpolation polynomials of degree n - 1, for the nodes i = O(1) n - 1, 
n = 2(l) 11, proved to be quite accurate in a variety of test examples [1].2 

1 When given f(ih) and f’(ih), instead of f(i) and f’(i), change the variables in (1) to t’ = t/h 
and p’ = ph. Then if g(r’) = f(t) = f(ht’), we have g(i) = f(ih), g’(i) = hf’(ih), and F(p) = 
hG(p’) = h Jo” e-“tg(t)cfc. 

2 In [l], the fourth paragraph on p. I and the second paragraph on p. 4 are not entirely correct 
and should be deleted. 
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From the success of [l], it was natural to consider the approximation 

F(p) = jam e-plf(t) dt N jOm e-“*L,,-,(t) dt 

n-1 

= c 64"'(P)f(i) + P(P) f'(U, (3) 
i=O 

where A:“)(p) and BP)(p) are the Laplace transforms of the coefficients of f(i) 
and f’(i) in Lznel(t), namely, 

Al”)(p) = jam e -“t{(Lp)(t))2 (1 - 2Lj”“(i)(t - i))> dt, (4) 

and 

BP)(p) = jam e-nt{(lj”)(t))2 (t - i)} dt, (5) 

where L:“)(t) = n,“=tj,i (t - j)/n,Litj,< (i -j). Some time ago, Al”)(p) and 
B:“)(p), which are polynomials of degree 2n in I/p, without a constant term, were 
obtained for n = 2(l) 9, the coefficients given as exact rational numbers, with the 
original purpose of producing numerical tables of A?)(p) and B:“)(p) for argument 
p, similar to those in [l]. That project was discontinued in view of the widespread 
number of presently available computer programs for generating polynomials to 
multiple precision, and Aj”)(p) and B:“)(p) were deposited in the Unpublished 
Mathematical Tables File in Mathematics of Computation [2]. For n = 2(l) 9, 
the rightmost member of (3) is obtainable as the matrix product ABCT, where A 
is the 1 x 2n row-matrix ]if(O)f(l)...f(n - l)f’(O)f’(l)...f’(n - l)lI, B is the 
2n x 2n square matrix of coefficients of p-“, m = l(1) 2n, in both A?)(p) and 
B!“)(p), i = O(1) n - 1, and C is the 1 x 2n row-matrix /jp-l~-~...p-~~ 11. For 
fixed or few values of A(C) it might be economical to precompute and store 
AB(BCT) to use for many different values of C(A). Printing out BCT for a large 
number of regularly spaced p’s would fulfill the original intention of having tables 
of A?)(p) and BP)(p) available for wide distribution and handy in desk calculation. 

The purpose of this note is to show how another way of computing the Laplace 
transforms of the interpolation polynomials in the osculatory and hyperosculatory 
cases, which employs the barycentric form of the interpolation polynomial in 
conjunction with Gauss-Laguerre quadrature, is much more efficient and better 
adapted to present-day computers. 

Osculatory Case. The rightmost member of (3) is calculated for a given p by a 
method that bypasses the computation of A?)(p) and B:“)(p). The method employs 
a variation of (2) where t$(tj) =f(tJp) is replaced by L2n-l(ti/p). Since (2) is an 
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exact formula when 4(t) is any polynomial of the (2n - 1)th degree, no accuracy 
is lost when tj/p falls far outside the interpolation interval [0, n - I], although that 
will probably require extra places in the computation. The calculation of Lz,&ti/p) 
is facilitated by employing the barycentric form of L3n-l(t) [3]. First we obtain 

Bi,j = ai/(tjlP - i) and %,i = GLi + bi)MP - 9, 

i = O(1) n - 1, j = l(1) n, (6) 

where ai and bi , which are exact integers, have been previously tabulated up to 
n = 11 for 21th degree accuracy in Lznel(t) [3, p. 215].3 Both ai and bi have few 
digits, at the most eight. Next we find 

Finally we obtain 

The main advantage in (6)-(8) over the previous ABCT method using the UMT 
File in [2] is that there is much less storage. We discount the storage off(i) and 
f’(i) that is common to both methods. For (6) and (8) we store the auxiliary 
quantities ai and bi , i = O(1) n - 1, and ti and Aj , j = l(1) n. Since ai = Q,-,-~ 
and bi = -b,-l-i , actually only 2[(n + 1)/2] + 2n - 3n distinct quantities are 
stored. The ABCT method involves the storage of 4n2 numerators of fractions 
(exceeding 15 digits at n = 9) and 2n l.c.d.‘s, one for each Al”)(p) and Bin)(p). The 
number of m - d’s (multiplication-divisions) in (6)-(8) is 4n2 + 3n + 1, which is 
only slightly less than the 4n2 + 4n 4 m - d’s in using [2]. But in (6)-Q) the m - d 
operations are more compact in arrangement and more efficiently performed 
because of the much smaller number of stored constants, and also because of the 
smaller average number of digits per constant. 

Hyperosculatory Case. Here also the (3n - 1)th degree interpolation poly- 
nomial LBndl(t) which is based upon f(i), f’(i) and f”(i), i = O(1) IE - 1 (often 

3 In [3] and [4], for n > 2, add [(n - 1)/2] to the subscript i in ai, bi and ci to agree with the 
present notation. [**a] denotes the nearest integer throughout this article. 

4 This estimate ignores a substantial amount of recent literature on reducing the number of 
multiplications in evaluating polynomials, by a more complicated arrangement of operations, 
which appears to be too cumbersome to apply here 
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f”(i) is had immediately from f(i) and f’(i) from a second-order differential 
equation), is expressed in barycentric form [4]. Tables of auxiliary coefficients 
ai , bi and ci for calculating Lan-l(t) are available for 12 = 2(l) 7, providing up to 
20th degree accuracy [4, p. 106J3 As before, ai , b, and ci are integers having at most 
eight digits. We calculate first 

yi,j = 4~jhJ - i>, Bid = (Yi,j + W(4lP - 4 and 

%,j = (fii,j + ci)/Cfj/P - j), i = O(l)n - 1, j = 1(1)[(3n + l)Pl, (9) 

and then 

.j = 1(1)[(3n + 1)/2], (10) 

and finally, employing a Gauss-Laguerre formula to attain at least (3n - 1)th 
degree accuracy, 

The advantages of (9)-(11) over calculating the Laplace transforms of hyper- 
osculatory interpolation coefficients as polynomials in 1 /P,~ namely, a big reduction 
in the number of stored constants, with a smaller average number of digits per 
constant, making for more compactness and greater efficiency in machine com- 
putation, are even more marked than in the preceding osculatory case. Here we 
discount the storage of f(i), f’( ‘) I , andf”(i) that is common to both methods. For 
(9) and (11) we store the auxiliary constants ai , bi , and ci , i = O(1) n - 1, and 
tj and Aj ,j = 1(1)[(3n + 1)/2]. Since here ai = (- l)n-l u,_,-~, bi = (-1)” b,-,_i , 
and ci = (-1),-l c,-~-~ , actually only 3 [(n + 1)/2] + 2[(3n + 1)/2] N 4+ n 
distinct quantities are stored, whereas a method corresponding to the preceding 
ABCr would require the storage of 9n2 numerators and 3n l.c.d.‘s, the numerators 
running into double precision for even moderately large IZ. The number of m - d’s 
in (9)-(ll), not counting the factor l/2 in (lo), is (6n + 3)[(3n + 1)/2] + 1 N 
(averaging even with odd n) 9n2 + 6n. This is the same as the number of m - d’s 
for an ABCT method,4 but as noted before, considerably more efficient in operation. 

6 At present there are no tables of explicit polynomial expressions in terms of l/p, similar to 
Atnt(p) and B!*‘(p) in [2]. 1 I 
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